
SLR Models:  Estimation

• Those OLS Estimates 

• Estimators (ex ante) v. estimates (ex post) 

• The Simple Linear Regression (SLR) Conditions SLR.1-SLR.4 

• An Aside:  The Population Regression Function (PRF) 

• B0 and B1 are Linear Estimators (conditional on the x’s) 

• OLS estimators are unbiased! (under SLR.1-SLR.4)   

• … but B1 is not alone 

• OLS estimators have a variance 

• SLR.5 – Homoskedasticity 

• Variance of the OLS Estimators (assuming SLR.1-SLR.5) 

• MSE/RMSE (Goodness-of-Fit) and Standard Errors 

• OLS estimators are BLUE! (under SLR.1-SLR.5) 



SLR Models Estimation:  Those OLS estimates
• Your data: ( , )x y :  { }, 1, 2,...i ix y i n= . 

• You fit a straight line to the data:  0 1i iy xβ β+    

 OLS:  estimate 0β  (intercept parameter) and 1β  (slope parameter) found by

( )( )2
0 1min i iSSR y b b x= − +∑  wrt 0b  and 1b . 

• OLS estimates (for your dataset): 
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 Intercept:  0 1
ˆ ˆy xβ β= − . 

 



ex Post estimates v. ex Ante estimators

• Estimates:  exPost (actual; after the event):   
 Numbers driven by the specific sample 

 Slope estimate:  1 2
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 Intercept estimate:  0 1
ˆ ˆy xβ β= − . 

• Estimators:  exAnte (before the event) 
 Random variables… will take on different values depending on the actual sample 

 Slope estimator:  1 2 2
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 Intercept estimator:  0 1B Y B X= −  



SLR Models Estimation:  Let’s review notation!

• Random variables (upper case letters):  X's and Y's 

• Data (lower case letters):  x's and y's 

• True parameters (to be estimated):  0 1andβ β  

• Parameter estimators (random variables; upper case letters):  0 1B and B  

• Parameter estimates (estimated coefficients; (true) parameter estimates; denoted 
with hats):  0 1

ˆ ˆandβ β  



Those SLR Conditions:  SLR.1-SLR.4

• SLR.1 – Linear model (DGM):  0 1i i iY X Uβ β= + + … 1,... ,i n=   

 ' , 'X s Y s  and 'U s are random variables 

 0 1andβ β  are (true) parameters to be estimated. 

 DGM:  Data Generation Mechanism 

• SLR.2 – Random sampling:  the sample { }( , )i ix y is a random sample 

• SLR.3 – Sample variation in the independent variable:  the 'ix s  are not identical 

• SLR.4 – U has zero conditional mean:  ( | ) 0E U X x= =  for all x.  This implies: 

 ( ) 0E U =   (U has mean zero)   

 ( , ) 0Cov X U =   (X and U are 
uncorrelated)  



PRFs and Linear Estimators

• Population Regression Function (PRF):  ( | )E Y X x=  

 PRF:  The conditional means of the dependent variable Y (conditional on the x's) 

 0 1( | )E Y X x xβ β= = +  given SLR.1 and SLR.4 

• B0 and B1 are Linear Estimators (conditional on the x’s) 

 1B  is linear in the 'iY s  (conditional on the x’s): 

1 i iB bY=∑ , where 2
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 Note that conditional on the x’s means that we are taking the x values as given, 
and not as random variables with values to be determined. 

 0B  is also linear in the 'iY s  (conditional on the x’s):
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OLS Estimators are Unbiased!  Who saw this coming?

• Recall SLR.1:  0 1Y X Uβ β= + +  ( 0β  and 1β  to be estimated). 

• Recall the OLS slope and intercept estimators (conditional on the x’s) 

 OLS slope estimator:  1
( )
( )

i
i

i

Y Y
B w

x x
−

=
−∑  

where 
2( )

( 1)
i

i
xx

x xw
n S
−

=
−

 are non-negative weights that sum to 1,  1iw =∑  

 OLS intercept estimator:  0 1B Y B x= −  

• Given SLR.1-SLR.4:  B0 and B1 are unbiased estimators! 

 B1 is unbiased! - ( )1 1| 'E B x s β=  all x's for all x's implies ( )1 1E B β=   

 B0 is also unbiased! - ( )0 0| 'E B x s β=  all x's for all x's implies ( )0 0E B β=   

• So:  OLS = LUE!   



But B1 is not Alone!

• Given SLR.1-SLR.4:  There are an infinite number of linear unbiased slope estimators. 

• Any weighted average of the slopes of the lines connecting the data points to the 
samples means will also be a LUE (conditional on the x's) of the slope parameter: 

 Here's a LUE:   i
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, since 1iα =∑ . 

 And since this is the case for all x’s, we have an unbiased estimator of 1β . 

 Since we only require 1iα =∑ , we have an infinite number of unbiased slope 
estimators (as we vary the 'i sα ).  

• So the fact that OLS gives you LUE's does not make OLS so special!  



So many LUEs! Test your understanding!
• From before,  

 Given SLR.1-SLR.4, ( ) 0 1|i i iE Y x xβ β= +  and ( )| 'E Y x s 0 1xβ β= + .   
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• So each of the following is an unbiased slope estimator, conditional on the x's:   



OLS Estimators (B0 and B1) have Variances I
• Variances of the OLS estimators:  The OLS estimators, 0B  and 1B , are random 

variables, with a joint distribution, means, variances and a covariance.  The sample 
you are working with is just one of many possible samples. 

• An example. 

 A random sample:  0 .5i i iY X U= + + ,  [0,1]iX Uniform ; (0,1)iU N ; nObs=10  

 Here are distributions of those 10,000 estimated intercepts and slopes: 

 
The means of the 10,000 estimates are quite close to the true parameter values…  but 
notice the large variation driven by the random nature of the DGM. 
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The BLUE Challenge:  
Which LUE has the smallest variance?

• I say again!:  Because they are random variables, estimators have means, variances, 
covariances, correlations, etc etc etc. 

• In particular:  The OLS estimators 0B  and 1B  are random variables, with a joint 
distribution, means, variances, and a covariance.  Different samples will generate 
different intercept and slope estimates.  Who knows if your sample is representative? 
…  your estimates could in fact be not at all close to the true parameter values.  It all 
depends on your sample! 

• Getting to BLUE (Best Linear Unbiased Estimators):    

This will be all about finding the LUE(s?) (amongst the many) with the minimum 
variance.  



SLR.5: Homoskedasticity
• SLR.5:  Homoskedasticity  (constant conditional variance of the error term, U) 

 To derive the variances of the estimators, we make one additional assumption: 

 SLR.5:  2( | )Var U X x σ= =  for all x 

 Note that SLR.5 holds if U is independent of X, so that 
2( | ) ( )Var U X x Var U σ= = = . 

 Heteroskedasticity:  the conditional variances are not all the same. 



Heteroskedasticity Example:  Real Estate valuation
• Newton real estate sales prices and lot sizes (heteroskedasticity) 
 
      Source |       SS           df       MS      Number of obs   =       284 
-------------+----------------------------------   F(1, 282)       =     69.24 
       Model |  1.2374e+13         1  1.2374e+13   Prob > F        =    0.0000 
    Residual |  5.0402e+13       282  1.7873e+11   R-squared       =    0.1971 
-------------+----------------------------------   Adj R-squared   =    0.1943 
       Total |  6.2776e+13       283  2.2182e+11   Root MSE        =   4.2e+05 
------------------------------------------------------------------------------ 
       price |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
     lotsize |   42.22929   5.075149     8.32   0.000     32.23931    52.21928 
       _cons |   374248.4   61384.29     6.10   0.000     253418.8      495078 
------------------------------------------------------------------------------ 
 

 
   predicteds v. actuals                    residuals v. lot size 
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OLS Estimators (B0 and B1) have Variances II
• If SLR.5 holds, in addition to SLR.1-SLR.4, then we have the following variances of 

the OLS estimators, conditional on the particular sample of { }ix : 
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• Comments: 

 1( )Var B decreases with decreases in the error variance, 2σ , and with increases in 
the variation of the independent variable.  Makes sense?  

 Where does this variance come from?  The estimator is always just the OLS 
estimator, so the variation is coming from the DGM.  



MSE/RMSE and the Standard Error of the Regression

• Mean Squared Error (MSE):  Typically, we don’t know the actual value of the 

variance 2σ .  But we can estimate it with the:  2ˆ
2
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n
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−

. 

 Recall:  MSE is one of our Goodness-of-Fit metrics in OLS/SLR Assessment. 

• RMSE:  The standard error of the regression, sometimes called the Root MSE (or 

RMSE), is the square root of this:  ˆ
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MSE is an Unbiased Estimator of var(U|x)

Unbiasedness I:  ( ) 2 var( | )E MSE U X xσ= = = , given SLR.1-SLR.5 

• 2ˆMSE σ=  is an unbiased estimator of the variance , 2σ  (the homoscedastic error) , 
given SLR.1-SLR.5 and conditional on the x’s 

Unbiasedness II:  ( )1( 1) xx
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 is an unbiased estimator of 1( )Var B .   



Standard Errors of B1: Estimates of sd(B1)

• We don’t typically know the actual value of σ , and so we usually can't derive 

1 2
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• But we can approximate 1( )sd B , with the standard error of 1B , 1( )se B , by 
approximating σ with ˆRMSE σ= :  
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 1( )se B is useful in statistical inference…  for constructing confidence intervals 
for, and testing hypotheses about, 1β , the true slope parameter in the DGM.   



Onwards to Gauss, Markov, BLUE… and Inference!
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