
SLR Models:  Estimation

• Those OLS Estimates 

• Estimators (ex ante) v. estimates (ex post) 

• The Simple Linear Regression (SLR) Conditions SLR.1-SLR.4 

• An Aside:  The Population Regression Function (PRF) 

• B0 and B1 are Linear Estimators (conditional on the x’s) 

• OLS estimators are unbiased! (under SLR.1-SLR.4)   

• … but B1 is not alone 

• OLS estimators have a variance 

• SLR.5 – Homoskedasticity 

• Variance of the OLS Estimators (assuming SLR.1-SLR.5) 

• MSE/RMSE (Goodness-of-Fit) and Standard Errors 

• OLS estimators are BLUE! (under SLR.1-SLR.5) 



SLR Models Estimation:  Those OLS estimates
• Your data: ( , )x y :  { }, 1, 2,...i ix y i n= . 

• You fit a straight line to the data:  0 1i iy xβ β+    

 OLS:  estimate 0β  (intercept parameter) and 1β  (slope parameter) found by

( )( )2
0 1min i iSSR y b b x= − +∑  wrt 0b  and 1b . 

• OLS estimates (for your dataset): 
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ex Post estimates v. ex Ante estimators

• Estimates:  exPost (actual; after the event):   
 Numbers driven by the specific sample 

 Slope estimate:  1 2
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 Intercept estimate:  0 1
ˆ ˆy xβ β= − . 

• Estimators:  exAnte (before the event) 
 Random variables… will take on different values depending on the actual sample 

 Slope estimator:  1 2 2
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 Intercept estimator:  0 1B Y B X= −  



SLR Models Estimation:  Let’s review notation!

• Random variables (upper case letters):  X's and Y's 

• Data (lower case letters):  x's and y's 

• True parameters (to be estimated):  0 1andβ β  

• Parameter estimators (random variables; upper case letters):  0 1B and B  

• Parameter estimates (estimated coefficients; (true) parameter estimates; denoted 
with hats):  0 1

ˆ ˆandβ β  



Those SLR Conditions:  SLR.1-SLR.4

• SLR.1 – Linear model (DGM):  0 1i i iY X Uβ β= + + … 1,... ,i n=   

 ' , 'X s Y s  and 'U s are random variables 

 0 1andβ β  are (true) parameters to be estimated. 

 DGM:  Data Generation Mechanism 

• SLR.2 – Random sampling:  the sample { }( , )i ix y is a random sample 

• SLR.3 – Sample variation in the independent variable:  the 'ix s  are not identical 

• SLR.4 – U has zero conditional mean:  ( | ) 0E U X x= =  for all x.  This implies: 

 ( ) 0E U =   (U has mean zero)   

 ( , ) 0Cov X U =   (X and U are 
uncorrelated)  



PRFs and Linear Estimators

• Population Regression Function (PRF):  ( | )E Y X x=  

 PRF:  The conditional means of the dependent variable Y (conditional on the x's) 

 0 1( | )E Y X x xβ β= = +  given SLR.1 and SLR.4 

• B0 and B1 are Linear Estimators (conditional on the x’s) 

 1B  is linear in the 'iY s  (conditional on the x’s): 

1 i iB bY=∑ , where 2
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 Note that conditional on the x’s means that we are taking the x values as given, 
and not as random variables with values to be determined. 

 0B  is also linear in the 'iY s  (conditional on the x’s):
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OLS Estimators are Unbiased!  Who saw this coming?

• Recall SLR.1:  0 1Y X Uβ β= + +  ( 0β  and 1β  to be estimated). 

• Recall the OLS slope and intercept estimators (conditional on the x’s) 

 OLS slope estimator:  1
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 OLS intercept estimator:  0 1B Y B x= −  

• Given SLR.1-SLR.4:  B0 and B1 are unbiased estimators! 

 B1 is unbiased! - ( )1 1| 'E B x s β=  all x's for all x's implies ( )1 1E B β=   

 B0 is also unbiased! - ( )0 0| 'E B x s β=  all x's for all x's implies ( )0 0E B β=   

• So:  OLS = LUE!   



But B1 is not Alone!

• Given SLR.1-SLR.4:  There are an infinite number of linear unbiased slope estimators. 

• Any weighted average of the slopes of the lines connecting the data points to the 
samples means will also be a LUE (conditional on the x's) of the slope parameter: 

 Here's a LUE:   i
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 And since this is the case for all x’s, we have an unbiased estimator of 1β . 

 Since we only require 1iα =∑ , we have an infinite number of unbiased slope 
estimators (as we vary the 'i sα ).  

• So the fact that OLS gives you LUE's does not make OLS so special!  



So many LUEs! Test your understanding!
• From before,  

 Given SLR.1-SLR.4, ( ) 0 1|i i iE Y x xβ β= +  and ( )| 'E Y x s 0 1xβ β= + .   
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• So each of the following is an unbiased slope estimator, conditional on the x's:   



OLS Estimators (B0 and B1) have Variances I
• Variances of the OLS estimators:  The OLS estimators, 0B  and 1B , are random 

variables, with a joint distribution, means, variances and a covariance.  The sample 
you are working with is just one of many possible samples. 

• An example. 

 A random sample:  0 .5i i iY X U= + + ,  [0,1]iX Uniform ; (0,1)iU N ; nObs=10  

 Here are distributions of those 10,000 estimated intercepts and slopes: 

 
The means of the 10,000 estimates are quite close to the true parameter values…  but 
notice the large variation driven by the random nature of the DGM. 
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The BLUE Challenge:  
Which LUE has the smallest variance?

• I say again!:  Because they are random variables, estimators have means, variances, 
covariances, correlations, etc etc etc. 

• In particular:  The OLS estimators 0B  and 1B  are random variables, with a joint 
distribution, means, variances, and a covariance.  Different samples will generate 
different intercept and slope estimates.  Who knows if your sample is representative? 
…  your estimates could in fact be not at all close to the true parameter values.  It all 
depends on your sample! 

• Getting to BLUE (Best Linear Unbiased Estimators):    

This will be all about finding the LUE(s?) (amongst the many) with the minimum 
variance.  



SLR.5: Homoskedasticity
• SLR.5:  Homoskedasticity  (constant conditional variance of the error term, U) 

 To derive the variances of the estimators, we make one additional assumption: 

 SLR.5:  2( | )Var U X x σ= =  for all x 

 Note that SLR.5 holds if U is independent of X, so that 
2( | ) ( )Var U X x Var U σ= = = . 

 Heteroskedasticity:  the conditional variances are not all the same. 



Heteroskedasticity Example:  Real Estate valuation
• Newton real estate sales prices and lot sizes (heteroskedasticity) 
 
      Source |       SS           df       MS      Number of obs   =       284 
-------------+----------------------------------   F(1, 282)       =     69.24 
       Model |  1.2374e+13         1  1.2374e+13   Prob > F        =    0.0000 
    Residual |  5.0402e+13       282  1.7873e+11   R-squared       =    0.1971 
-------------+----------------------------------   Adj R-squared   =    0.1943 
       Total |  6.2776e+13       283  2.2182e+11   Root MSE        =   4.2e+05 
------------------------------------------------------------------------------ 
       price |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
     lotsize |   42.22929   5.075149     8.32   0.000     32.23931    52.21928 
       _cons |   374248.4   61384.29     6.10   0.000     253418.8      495078 
------------------------------------------------------------------------------ 
 

 
   predicteds v. actuals                    residuals v. lot size 
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OLS Estimators (B0 and B1) have Variances II
• If SLR.5 holds, in addition to SLR.1-SLR.4, then we have the following variances of 

the OLS estimators, conditional on the particular sample of { }ix : 
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• Comments: 

 1( )Var B decreases with decreases in the error variance, 2σ , and with increases in 
the variation of the independent variable.  Makes sense?  

 Where does this variance come from?  The estimator is always just the OLS 
estimator, so the variation is coming from the DGM.  



MSE/RMSE and the Standard Error of the Regression

• Mean Squared Error (MSE):  Typically, we don’t know the actual value of the 

variance 2σ .  But we can estimate it with the:  2ˆ
2
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n
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. 

 Recall:  MSE is one of our Goodness-of-Fit metrics in OLS/SLR Assessment. 

• RMSE:  The standard error of the regression, sometimes called the Root MSE (or 

RMSE), is the square root of this:  ˆ
2
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MSE is an Unbiased Estimator of var(U|x)

Unbiasedness I:  ( ) 2 var( | )E MSE U X xσ= = = , given SLR.1-SLR.5 

• 2ˆMSE σ=  is an unbiased estimator of the variance , 2σ  (the homoscedastic error) , 
given SLR.1-SLR.5 and conditional on the x’s 

Unbiasedness II:  ( )1( 1) xx
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 is an unbiased estimator of 1( )Var B .   



Standard Errors of B1: Estimates of sd(B1)

• We don’t typically know the actual value of σ , and so we usually can't derive 

1 2
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• But we can approximate 1( )sd B , with the standard error of 1B , 1( )se B , by 
approximating σ with ˆRMSE σ= :  
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 1( )se B is useful in statistical inference…  for constructing confidence intervals 
for, and testing hypotheses about, 1β , the true slope parameter in the DGM.   



Onwards to Gauss, Markov, BLUE… and Inference!
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