SLR Models: Estimation

Those OLS Estimates

Estimators (ex ante) v. estimates (ex post)

The Simple Linear Regression (SLR) Conditions SLR.1-SLR.4
An Aside: The Population Regression Function (PRF)

Bo and B; are Linear Estimators (conditiarial on the x’s)

OLS estimators are unbiased! (under SLR.1-SLR.4) SLR.1- Linear (DGM) Model

__but B+ is not alone SLR.2: Random Sample
! SLR.3: Sample variation in the RHS variable
OLS estimators have a variance SLR.4: U has zero mean | RHS variable

SLR.5 — Homoskedasticity SLR.5: Homoskedasticity | RHS variable

Variance of the OLS Estimators (assuming SLR.1-SLR.5)
MSE/RMSE (Goodness-of-Fit) and Standard Errors
OLS estimators are BLUE! (under SLR.1-SLR.5)



SLR Models Estimation: Those OLS estimates
Your data: (x,y): {x,y;} i=12..n.
You fit a straight line to the data: vy, ~ f, + B

= OLS: estimate g, (intercept parameter) and g, (slope parameter) found by
min SSR =" (y, — (b, +bx))” wrt b, and b

OLS estimates (for your dataset):
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ex Post estimates v. ex Ante estimators

e Estimates: exPost (actual; after the event):

= Numbers driven by the specific sample

- (%X - V)

= Slope estimate: p, = , and

Z (Xi o 7)2

= [Intercept estimate: ,5’0 = 7—,5’17.

e Estimators: exAnte (before the event)

= Random variables... will take on different values depending on the actual sample
> (%= XY, -Y) Y (X =X,

(X=X DX, - X)?

= Intercept estimator: B, =Y - B,X

= Slope estimator: B, =



SLR Models Estimation: Let’s review notation!

Random variables (upper case letters): X'sand Y's
Data (lower case letters): x'sandy's

True parameters (to be estimated): £, and S,
Parameter estimators (random variables; upper case letters): B, and B,

Parameter estimates (estimated coefficients; (true) parameter estimates; denoted
with hats): S, and £,



Those SLR Conditions: SLR.1-SLR.4

SLR.1 - Linear model (DGM): Y, = g, + B X, +U. ... i=1..,n

= X's,Y's and U 'sare random variables

= [, and g, are (true) parameters to be estimated.

= DGM: Data Generation Mechanism

SLR.2 — Random sampling: the sample {(xi Y )} Is a random sample

SLR.3 — Sample variation in the independent variable: the x.'s are not identical

SLR.4 — U has zero conditional mean: E(U | X =x) =0 forall x. This implies:

" E()=0 (U has mean zero) SLR.1: Linear (DGM) Model

= Cov(X,U)=0 (XandU are SLR.2: Random Sample
( ) ( SLR.3: Sample variation in the RHS variable
uncorrelated)

SLR.4: U has zero mean | RHS variable




PRFs and Linear Estimators

e Population Regression Function (PRF): E(Y | X =X)
= PRF: The conditional means of the dependent variable Y (conditional on the x's)
= E(Y|X=Xx)=p4,+ /X given SLR.1 and SLR.4

e Boand B: are Linear Estimators (conditional on the x’s)

= B, islinearinthe Y,'s (conditional on the x’s):

X—X)  (X%—X)
B, =Y bY,, where b, = Z X, —X)’ (n—l)SXX

= Note that conditional on the x’s means that we are taking the x values as given,
and not as random variables with values to be determined.

= B, isalso linear in the Y, 's (conditional on the x’s):

B, = Z%Yi -X>_bY, = ZE—W}Q



OLS Estimators are Unbiased! \Who saw this coming?

Recall SLR.1: Y =4, + B X +U (B, and p, to be estimated).

Recall the OLS slope and intercept estimators (conditional on the x’s)

= OLS slope estimator: B, = Z\Ni gl. :Q OLS é LUE

(Xi _Y)Z

(n-1)S

where w, = are non-negative weights that sumto 1, Zwi =1

= OLS intercept estimator: B, =Y —B,X

Given SLR.1-SLR.4: Bo and B: are unbiased estimators!

* Buisunbiased! - E(B, |x's)= g, all x's for all x's implies E(B,) =4,

* Boisalso unbiased! - E(B, | x's)= 3, all x's for all x's implies E(B,) = £,
So: OLS = LUE!



But B, Is not Alone!

Given SLR.1-SLR.4: There are an infinite number of linear unbiased slope estimators.

Any weighted average of the slopes of the lines connecting the data points to the
samples means will also be a LUE (conditional on the x's) of the slope parameter:

Here's a LUE: Zai(; \;j where » o, =1.

Then conditional on the x’s:

e 2[5 | D5 - mua-

X —X

And since this is the case for all x’s, we have an unbiased estimator of /.

Since we only require Z“i =1, we have an infinite number of unbiased slope
estimators (as we vary the ¢, 's).

So the fact that OLS gives you LUE's does not make OLS so special!



So many LUEs! Test your understanding!

e From before,
= GivenSLR.1-SLR4, E(Y,|x)=4,+BX and E(Y |x's) = f, + BX.

= Then E Y _
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X'S =/ ,sinceE| ——
j P [ i
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e So each of the following is an unbiased slope estimator, conditional on the x's:

(Y -T ) ot Ax) (& +AX —X
PR ) R E[El|x'5]=[ﬁ” Bx) E_ﬁ; AY) _ A ) _p
LS L (2 —X) (g —X)
:;. -_75"| :"- "_75'1 !f-. T h
. 3 ¥, }_ . 5| T }_: . B- F-F |
;'-,_XI_X_.-'I X _E__." EI_X__.-'
A ¥.-F T -T Y.-F |
» B=9 L1 _+1 _ » B=35 1= |+3
;'-,_XI_X_.-'I .__R_E _EJ,I XI_E?-_,-" ":_X _X J
:;. ro_ i N :"-. _¥ ™ !;- T T ! !;.
- B-15 ¥, -1 __5:} i . 3 -1 I, -T. ] Y. -1




OLS Estimators (B, and B,) have Variances |

e Variances of the OLS estimators: The OLS estimators, B, and B, are random

variables, with a joint distribution, means, variances and a covariance. The sample
you are working with is just one of many possible samples.

e Anexample.
= Arandom sample: Y. =0+.5X,+U,, X.~Uniform[0,1];U, ~ N(0,1); nObs=10

= Here are distributions of those 10,000 estimated intercepts and slopes:

T T T T T T T T
-10 -5 0 5) -5 0 5 10
b0 est. bl est.

The means of the 10,000 estimates are quite close to the true parameter values... but
notice the large variation driven by the random nature of the DGM.



The BLUE Challenge:
Which LUE has the smallest variance?

| say again!: Because they are random variables, estimators have means, variances,
covariances, correlations, etc etc etc.

In particular: The OLS estimators B, and B, are random variables, with a joint

distribution, means, variances, and a covariance. Different samples will generate
different intercept and slope estimates. Who knows if your sample is representative?
... your estimates could in fact be not at all close to the true parameter values. It all

depends on your sample!
Getting to BLUE (Best Linear Unbiased Estimators):

This will be all about finding the LUE(s?) (amongst the many) with the minimum
variance.



SLR.5: Homoskedasticity

e SLR.5: Homoskedasticity (constant conditional variance of the error term, U)
» To derive the variances of the estimators, we make one additional assumption:

SLR.5: Var(U | X =x) =0 forall x

= Note that SLR.5 holds if U is independent of X, so that
Var(U | X =x)=Var(U) =o".

= Heteroskedasticity: the conditional variances are not all the same.

Homoscedasticity Heteroscedasticity



Heteroskedasticity Example: Real Estate valuation

1.2374e+13
5.0402e+13

Newton real estate sales prices and lot sizes (heteroskedasticity)

42 .22929
374248 .4

5.075149
61384.29
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MS Number of obs = 284
F(1, 282) = 69.24
1.2374e+13 Prob > F = 0.0000
1.7873e+11 R-squared = 0.1971
Adj R-squared = 0.1943
2.2182e+11 Root MSE = 4.2e+05
t P>|t]| [95% Conf. Interval]
8.32 0.000 32.23931 52.21928
6.10 0.000 253418.8 495078

28 | A N T * .
§ ° .? e (] % ° )

E '..%:"-?. .o' ..:o. oo °

=7 "o..’{:.. ?‘ 28y :.“:.o’ ' °

¢ ﬁ%’“ 0‘:”:. :o’: :. .o °
B (5 50‘00 10600 LotSizésaOO 20600 25(500

‘0 Price @ Fitted values ‘

T
20000

predicteds v. actuals

SLR.1:
SLR.2:
SLR.3:
SLR.4:

SLR.5:

Linear (DGM) Model

Random Sample

Sample variation in the RHS variable
U has zero mean | RHS variable

Homoskedasticity | RHS variable

residuals v.

lot size




OLS Estimators (B, and B,) have Variances Il

If SLR.5 holds, in addition to SLR.1-SLR.4, then we have the following variances of
the OLS estimators, conditional on the particular sample of {x; }:

2

(o2
2, (X =X)°

" Var(B,|x's) = and StdDev(B, | x's) =sd(B, | x's) =

\/Z(Xi _Y)Z

2 X-2
" Var(B,|x's) = ° 2%

n > (X, —X)’

Comments:

= Var(B,) decreases with decreases in the error variance, o, and with increases in
the variation of the independent variable. Makes sense?

= Where does this variance come from? The estimator is always just the OLS
estimator, so the variation is coming from the DGM.



MSE/RMSE and the Standard Error of the Regression

Mean Squared Error (MSE): Typically, we don’t know the actual value of the

variance o*. But we can estimate it with the: &% = iRZ — MSE .
n _

= Recall: MSE is one of our Goodness-of-Fit metrics in OLS/SLR Assessment.

RMSE: The standard error of the regression, sometimes called the Root MSE (or

RMSE), is the square root of this: ¢ = iRZ =+ MSE = RMSE .
n —



MSE is an Unbiased Estimator of var(U|x)

Unbiasedness I: E(MSE)=o* =var(U | X =x), given SLR.1-SLR.5

e MSE =57 is an unbiased estimator of the variance , o* (the homoscedastic error) ,
given SLR.1-SLR.5 and conditional on the x’s

MSE
(n-1)S,,

Unbiasedness 11: E( ] =Var(B,), given SLR.1-SLR.5

-
Z (Xi o 7)2 |

IS an unbiased estimator of Var(B,) .

we have:

e Given the above, and since Var(B,) =

MSE MSE
> (% -X)* (n-1S,




Standard Errors of B,: Estimates of sd(B,)

We don’t typically know the actual value of o, and so we usually can't derive
sd(B,) = o

WICE

But we can approximate sd(B,), with the standard error of B,, se(B,), by
approximating o with RMSE =5 :

PaN

RMSE RMSE

\/Z(Xi_Y)Z :\/Z(Xi_Y)z i Sx n_ll

= se(B,)Is useful in statistical inference... for constructing confidence intervals
for, and testing hypotheses about, £, the true slope parameter in the DGM.

= StdErr(B,) =se(B,) =




Onwards to Gauss, Markov, BLUE... and Inference!
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